Unit- T_{1}
ANALOG ElECTRONICS

Introduction:
Electronic Component:

* Electaonic components are classified into active and passive components.
* Active components supply energy to the circuit. Eg: Battery, semiconductor devices etc * 'Passive components consume energy from the source.

Eg: Resistors, Capacitors, Inductors etc.
RESISTORS (R)
$* R$ is an electrical /electronic component used to limit the flow of went:
$*$ Unit is ohm $(\Omega)_{p}$

* Symbol: $\sim \sim / \sim$
* R $\quad R \frac{V}{I}$ (By Ohm's law)
* $R=\frac{\rho l}{A}$
$R \rightarrow$ Resistance in ohm
$\rho \rightarrow$ Resistivity of the wire in ohm -cm
$l \rightarrow$ Length of the wore in cm .
Inductor (L):
It is used
to store the energy in the form of magnetic energy, when electricity is applied to it. The SI unit of inductor is Henry (H).

$$
\begin{aligned}
& L=\frac{Q(i)}{i} ; \\
& L(i) \rightarrow \text { Inductance } \\
& i \rightarrow \text { current } i \\
& i
\end{aligned}
$$

CAPACITOR
Capacitor is used to store the energy in the form of electrical charge producing a potential difference across the plates. S.I unit of capacitor is Farad (F).
$C \rightarrow$ Capacitance of a Capacitor
$\varepsilon_{0} \rightarrow$ Permittivity of free space
$\varepsilon_{r} \rightarrow$ " "dielectric medium
$d \rightarrow$ Distance between plates.
$A \rightarrow$ Area of two conducting plato

$$
C=\frac{Q}{V} \quad \begin{aligned}
& Q \rightarrow \text { Charge } \\
& A \rightarrow \text { Area }
\end{aligned}
$$

SEMI CONDUCTOR MATERIALS
Semiconductor is a material that has conductivity level beturean extremer of insulator and conductor Semiconductor
Intrinsic Semiconductor Extrinsic semiconducta (Pare form)

The process of adding impurity to a pure semiconductor is called doping.

Types: n-type, p-type.
N-type esemiconducter:
This is formed by doping pentavalent impurity atoms like arsenic, antimony or phosphorus. This process creates excess unlyond P type semiconductor:

This is formed ley doping trivalent impurity like Aluminium or lioron. This process creates excess holes.
Silicon and Germanium:

* Silicon and Germanium, are both in the same group (group 14). of the periodic * Both have 4 valence electrons in the outer shell.
* Both have similar physical and chemical Characteristics.
* Both are metalloid.

* Similarly the holes move into N-material Diode under Forward Bias Condition:
and combine with fore electrons donor and creates immobilized donor cons.
* Thus there is immobilized positive charge on N-side and immobilized negative charge on P-side of the junction. This region l known as Depletion region (or space charge region or transition region). \$1
* It crater a built-in potential or barrier potential, v_{b} across the junction.
* The basie potential V_{b} is 0.3 V for Germanium.
\& 0.7 V for Silicon.

This is done by connecting positive terminal of battery to P-type and its negative terminal to N-type as in figure.

Operation:

* Under Forward lias, the applied positive voltage repels the holes in P-type and holes move towards the function.
* Similarly, the applied negative voltage repels the electrons in N-type region and electrons move towards the junction.
* Hence the barrier height reduces with reduction in width of depletion region.
* The holes from P-type move to N-Tyr and electrons from N-type move towards P-type and due to this there is curesent flow \& it is called as forward current, If.

For $V_{F}>V_{B}$, the potential basoier disappears at the junction and lase current, If plows.
Diode under Reverse Bias Condition:
Reverse bias is obtained by connecting. positive terminal of the battery to N-type and negative terminal to the P-type.

Operation:

* Under Reverse bias, the majority alactrons are attracted by positive terminal and majority, holes are attracted by negative terminal of battery.
* Is a result, the depletion region is widened and the boovien potential rises.
* The majority corries cannot overcome this leavis energy and their flow is reduced to zero.
* The minority carvers however will cross the junction and contributes reverse count.

For large applied reverse lias voltage, Avalanche Effect electrons move towards positive ter mind of battery since a large number of elections are formed, it is called avalanche of pere electrons. This leads to breakdown of junction leading to loge reverse current. The reverse voltage at which the junction breakdown occurs is known as lereakdown voltage.

Diode Applicatere:

1) As rectifiers ar power diodes
2) As signal diodes in voltage regulator circuits.
3) As Zener diode in
h) As Vosactor diode in radio and TV receiver
4) As a switch in logic circuits."

In PN-junction under reverse bias the avalanche breakdown occurs. This leads to breakdown of junction loading to large reverse current. Here the multiplication of number of free elections courses the reverse current to increase rapidly.
Toner Eppect:

* Liner breakdown is different prom avalanche breakdown.
* Zener breakdown occurs when the electric field in the depletion layer increases and it lureaks covalent bond and generates elaction-hde paiN. * In this a large number of coria are generated.
* This process is quantum tunneling.

Zener Diode:
A zones diode is also called as voltage reference, voltage regulator on loreakdown diode.

Symbol

* Toner diode is operated in the reverse
lives breakdown region.
* The breakdown voltage of a zener diode is set by controlling the doping lend during manufacture.
Reverse Characteristic of Toner Diode:

Fig: Reverse characteristic of a Zener Diode.

* Zener diode is operated only in the reverse- lias region.
* From fig, the reverse voltage $\left(V_{R}\right)$ is increased, the revere current (I_{z}) roman negligibly small unto the 'knee 'of the curve point ' P '.
* At this point, the effect of lereakdown process begins.
* From the bottom of knee, the brcabtoun voltage, V_{z} remains constant. This ability of a diode is called regulating ability.

*There is a minimum value of zener current called breakover avoent ($\left.I_{z} \min \right)$ which must le maintained in order to keep the diode in breakdown or regulation region.
* When the current is reduced below knee, the voltage changes drastically and regulation is lost
$*$ Above the maximum value of zones current $I_{z(\max)}$ the diode may lie damaged. Applications:
* As Voltage Regulators
* As Clippers in wave-shaping Circuits
* As fixed reference voltage is power supplies and transistor biasing.

TRANSISTOR

* A bipolar junction transistor is a three-layes two junction and three-terminal semiconductor device.
* It's operation depends on the interaction of majority and minority Carries. Therefore it is named as bipolar device.
(TRANsfer + resISTOR \Rightarrow Transistor)
* Transistor means, signals are transferred from low resistance arcuit (input) into high resistance (output) Grain.

Emitter:-
It is more heavily doped than any of other regions because its main function is to Supply majority charge Carriers to the base.

* The current through the emitta is emitter current. If is denoted as I_{E}.

Base:-

* Base is the middle section of the transistor.
* It separates the Emitter and Collector.
* It is very lightly doped. It is very thin as compared to either Emitter (or) collector.
* The current flows through the Base section is base current, and its denoted as "IB".

Collector:-

* The main function of the collector is to Collect the majority Charge Carriers coming from the Emitter and passing through the Base.
* It is a moderately doped. The current flows through collector is collector Cursent. It in denoted as I_{c}.

Types:-
PNP \& NPN Transistors.

* Emitter section is always to provide charge Carriers, therefore, it is always forward biased.
* First letter of transistor bye indicates the polarity of the emitter voltage with respect to base.
* The main function of collector is to collect (or) attract those Carriers through the base, hence if is always reverse biased.
* second letter of transistor type indicates the polarity of collector voltage with respect to the Base.
Working of PNP -Transistor

* The above diagram shours the Connection of PNP-Transist.
* Here, the emitter-base junction is forward biased, and collector - base junction is reverse fiased.
* The holes in the emitter are repelled by the positive terminal of battery.
* Then the potential barrier at emittor-base junction is reduced as a result of this depletion region dis-appeair, hence holes cross the junction and enter into N -region (base).
* This constitutes the emitter current I_{E}, Because the base region is thin and lightly doped. majority of the holes $($ about $97.5 \%)$ are able to drift across the base without meeting electrons to combine with only 2.5% of the holes recombine with the free electrons (or) N-region.
* This constitutes the base current I_{B}, which is very small.
* The holes which after crossing the N-P Collector junction enter the collector region.
* They are swept out by the negative collector voltage $V_{C B}$. This constitutes the collector current I_{C}.

$$
I_{C}=I_{E}-I_{B}, I_{E}=I_{B}+I_{C}
$$

Working of $N-P-N$ Transistor

* In this Circuit diagram, the Emitter-Base junction is forward biased. (ire negative

polarity of the battery $\left(V_{E B}\right)$ is connected to N-type Emitter terminal.
* Similarly, the Collector -Base junction $\left(\bar{J}_{2}\right)$ is reverse biased by connecting are terminal of battery with Negative (n-hype) material.
* The electrons in the emitter region are repelled by the negative battery terminal towards the emitter junction.
* The electron crossover into the p-type base region because potential barrier is reduced due to forward bias, and base region is very thin and highly doped.
* Most of the electrons (about 97.5%) eross-over to the collector junction and enter the collector region, where they are readily swept up by the positive collector Voltage $V_{C B}$. only 2.5% of the emitter electrons combine with the holes in the base and are lost as charge Carriers.

TRANSISTOR - CONFIGURATIONS

There are 3-configurations.

1. Common-Base Configuration
2. Common-Emitter configuration
3. Common-Collector configuration.

Common-BASE CONFIGURATION

* In this configuration, base terminal acts as a common-terminal for input and output.

Diagram:-

* In this configuration, input is applied between emitter and base while output is taken from collector and base. Here, Base acts as a common to both input and output.

Input and output characteristics:-

* This diagram, shows, how the input (IE) emitter current varies with input voltage $V_{E B}$, when output voltage $V_{C B}$ is held constant.
* To determine the input Characteristics initially, the output Voltage $V_{C B}$ is set as zero, then the input voltage $V_{E B}$ is increased.
* The input charateristics drawn between emitter current I_{E} and emitter-base Voltage $V_{E B}$.
* The emitter current (IE) is taken along y-axis and $V_{E B}$ along x-axis.
* From the above graph, the emitter current (I_{E}) increases rapidly with small increase in emitter base Voltage.
* This indicates the the input resistance is very small.
* And also, the emitter current is almost independent of collector - base voltage.
* This leads to the conclusion that, emitter current T_{E} and hence collector current (I_{C}) is almost independent of Collector -base vorlage ($V_{C B}$).
* This input characteristics used to find the input resistance of the transistor.

Input Resistance $\left(R_{\text {in }}\right)=\frac{\Delta V_{E B}}{\Delta I_{E}}$ at
where,

$$
\begin{aligned}
\Delta V_{E B} \Rightarrow & \text { Change in Emitter-Base } \\
& \text { junction voltage } \\
& \quad I_{E} \Rightarrow \text { Change in Emitter-Cursent. }
\end{aligned}
$$

output Characteristics:-
To determine the output characteristics, the emitter current IE is kept constant, at a suitable value by adjusting the emitter-base voltage $V_{E B}$ and varying R_{2} and output current (I_{c}) is measured.

* The collector, -base Voltage $\left(V_{C B}\right)$ is increased from zero in a no of steps, and the corresponding collector Current (Ic) is noted.

* This output chatacteristics is dew between collector curcent I_{C}) and collects base Voltage ($V_{C B}$), at constant emitter curet $\left(I_{E}\right)$.
* 0/P Resistance $R_{\text {out }}=\frac{\Delta V_{c B}}{\Delta I_{c}}$
* This Characteristic is used to find amplification faction $\alpha=\frac{\Delta I C}{\Delta I_{E}}$

Saluration Region:-

* It is the region left to the vertical line. In thin regions, Collector-base voltage $r_{C B}$ is negative. ire the collector base junction is also forward biased and a small Change in $V_{C B}$ results in larger variation in collector Current.

Active Region:-

* It is the region, between the vertical line to horizontal axis.
* In this region, the collector current is almost constant and is equal to the emitter current.
* In this region, the emitter base junction is forward biased and collector-base junction is reverse biased.

Cut-If Region:-

* It is the region along the horizontal axis.
* In this region, both junctions are reverse biased.
* Due to this, there in no current flow in collector terminal due to majority carries.
* But due to minority Carriers, curcent will flow. This Current is kroun as reverse saturation currot
\qquad
\qquad
\qquad x \qquad \times \qquad \times

COMMON EMITTER CONFIGURATION

* In this configuration, input is applied between base and emitter and output is taken from the collector and emitter.
* Here, the emitter terminal is common to both input and output. Hence it is called common-Eviffer Configuration.
* Input Characteristics:-

* The above diagram Shows the Trait diagram for Common-emitter Configuration.
* A+ constant $V_{C E}$, the input current I_{B} varies with
* If the input voltage (VBE) is less than threshold (or) knee
voltage below which the
 base current is very small.
* The value of knee voltage is 0.3 V for germanium and 0.7 V for silicon transistor.
* Knee voltage means, the voltage at which Conduction Starts. ire input Current increases.
* This characteristics is similar to the forward. biased $P-N$ junction diode curve.
* As compared to $C B$ configuration, I_{B} increases less rapidly with $V_{B E}$.
* Therefore, input resistance of a CE configuration is higher than that of $C B$ configuration.
* Input resistance

$$
R_{\text {in }}=\frac{\Delta V_{B E}}{\Delta I_{B}}
$$

at constant $V_{C E}$
output Characteristics:-
It is a Curve between collector current and collector-emitter voltage at constant base current (I_{B}).

We know that

$$
\frac{1}{1-\alpha}=\beta+1 \Xi \gamma
$$

Therefore $\quad I_{1}=I_{n}(\beta+1)+I_{\text {cвo }}(\beta+1)$

$\ln _{\text {a transistor amplifier with } A C \text { input signal, the ratio of change in output curren }}$ whechange in input current is known as current amplification factor.
${ }^{1 n} C B$ configuration,
The current amplification factor ${ }^{2} \quad \alpha=\frac{\Delta I_{C}}{\Delta I_{B}}$ ${ }^{1}$ CE Configuration,

$$
\begin{equation*}
\alpha=\frac{\Delta I_{C}}{\Delta I_{E}} \tag{1}
\end{equation*}
$$

* After this, Collector current I_{c} becomes almost constant, and independent with $V_{C E}$.
* This value of $V_{C E}$ up to which Collector Current Ic changes is called the "knee Voltage". * when $I_{B}=0$, a small amount of collector Current Hours. It is called reverse saturation Current $C I_{C E O}$). Since the main collector current is zeno, the transistor is said to be cut-of region.
* It may be noted that, if $V_{C E}$ is increased Continuously, then deption region in $C B$ junction increased, it increases I_{C} and operates the transistor in active region.
* Further increase in $V_{C E}$ causes avalanche breakdown in C_{B} junction as a result of this, enormous I_{C} will flow and the transistor enters into breakdown region.
* This characteristics can be used to find current gain β. It is defined as the ratio of change in output current $\left(\Delta I_{C}\right)$ to the change in input Current $\left(\Delta I_{B}\right)$.

$$
\beta=\frac{\Delta I_{C}}{\Delta I_{B}}
$$

* Output resistance $\quad R_{o u t}=\frac{\Delta V_{C E}}{\Delta I C}$ at constant
I_{B}.

COMMON COLLECTOR CONAGURATION
In this configuration, collector terminal is common to input and output.
Circuit diagram:-

* The above diagram shows the Circuit diagram of Common Collector Configuration.
* To determine the output characteristics, the base current I_{B} is kept constant. At a Suitable value: by adjusting the base-Collector Voltage and varying R_{2} and the output current (Emitter (current I_{E}) is measured.
* since I_{C} is approxi-mately equal to I_{E}, thus Common Collector Characteristics is identical to CE-configuration.

$$
\text { Rout }=\frac{\Delta V_{C E}}{\Delta I_{E}} \text { at constant } I_{B} \text {. }
$$

Input characteristics:-

* This characterisfics may be used to find current amplification factor (V).

$$
V=\frac{\Delta I_{E}}{\Delta I_{B}} \text { at constant } V_{C E}
$$

\qquad
\qquad
\qquad
N-channel JFET

- majority carries are electrons.
P-Charnel JFET
- majority carriers are holes.
flow of current through the conducting region is controlled lay electric field.
* Hence the name is called as Field Effect Transistor (FET)..
* Current conduction is only lay majority coroviess. $\therefore F E T$ is said to be unipolar device
* Based on construction, FET is classified into two types.
i) Junction Field Effect Transistor (JFET)
ii) Metal Oxide Semiconductor Field Effect Transistor (MOSFET).
i) JEET

Depending on the majority caovieas,
$J F E T$ is classified into two types.
i) N -channel JFET
ii) P-channel JFET

It consists of Neotype N-type silicon lane The small puce of $P=$ type material are attached to its sides forming PN. function. Sovere (S) : Th roeg which the majority corries enters into N -charnel lear.
Drain (D). Showogh which the majointy carouse leaving form the N -channel lean. Gate (G): Heavily doped P-type silicon is differed on lath side of N-type bor Both junctions are connected to fam gats.
Channel:
The region leatuwan two depletion region is said to lee N.chanral.
Operation:-
(i) When $V_{S S}=0$ \& $\quad V_{D S}=0$

When no voltage is applied between drain and source, and gate to sower the thickness of depletion region is uniform; as shown in diagram.

ii) When $V_{D S}=O V$ \& $V_{\text {Sis }}$ is decreased from Zero:
In this case, PN junctions are reverse biased. Hence thickness of the depletion region is increased. As V_{93} is further decreased from zero, the reverse biased voltage increases. Hence thickness of the depletion regions are also increased until the 2 depletion regions contact with each other. This condition in said to be cut-off.
Cut - off Voltage $\left[V_{g S}(O F F)\right]$:
The $V_{g s}$ value at which the I_{D} current sust-cut - off in JFET is called cut-off voltage (or) $V_{g S}(O F F)$

(iii) When $V_{g S}=0$ and $V_{D S}$ is increased from 0 As shown in diagram drain is positive with respect to source with $V_{g s}=0 \mathrm{~V}$. Now the majority carriers (electrons) flow through the N -channel from source to drain I_{D} (Drain current) flow from drain to solace.

From fig. as $V_{D S}$ is fuother incosesed, the thickness of depletion region \&lso increass. The Channel is wedge shaped as shown in diagram, Hence, upper region is more revase biased than lowe regern.
PINCH- OFF Voltage $\left(V_{p}\right)$:
At the constant certain value of $V_{s s}$. the cross val sectioned area (Channel path) of JFET becomes minionum.

At this voltage the channal is said to be pinch off and the voltage $\left(v_{p}\right)$ is called pinch off voltage.

Two Types
(i) Drain Characteristic
(ii) Transfer Chooncteristice

In Ohmic region, the dacian to source voltage $\left(v_{g s}=-1 v, v_{g s}=-2 v, \ldots\right.$) The resistance $\frac{\Delta V_{D S}}{\Delta I_{D}}$ is related to gate voltage $V_{g S}$,

When $V_{D S}=V_{P}, I_{D}$ becomes maximum. When $V_{D S}$ is increased beyond V_{P}, the length of
the pinch - of ($O Q$) saturation region increase
Hence, there is no firth increase of I_{D}. ot a certain voltage corresponding to the point ' B ', I_{D} s suddenly increases.

Thus effect is due to the Avalanche multiplication of electrons caused by breaking of covalent bonds.

The drain voltage ($V_{D S}$) at which the breakdown occurs is denoted by $B V_{D C N O}$ When $V_{g}=O V$, variation of I_{p} with $V_{D S}$ is shown as curve $O A B C$.

When $V_{g s}$ is negative \& $V_{D S}$ is increased when gate is maintained at negative reverse voltage across the function is quather increased. Hence, I_{p} current decreases then alcove the pinch off voltage
Transfer Characteristics
For the transfer characteristics vs is kept constant at a suitable value greats than the punch off voltage $\left(V_{p}\right)$.

The gate voltage $V_{G S}$ is decreased from zero till I_{D} is reduced to zero. The transfer characteristic e $I_{P} V_{S} V_{G S}$ is shown in graph.
Applications of JFET.

1) Used as an electronic switch.
2) Used as an amplifier
3) Used as chopper.

1,) Used in bigifer circuits:

Two heavily doped N+ regions are difficesed in the P-type substrate forms an inversion lightly doped sulestrate of P-type silicon substrate layer.

D Nt region is called the source (S) and the other is called Drain (D).

The positive other is called D Drain (D). N^{+}regress induced negative charge
thin insulating layer of SiO_{2} is grown
increases, and the ind increases. over the surface of the structure and holes are cut into the oxide layer, allowing contact with solace and dram

Then a thin layer of metal aluminium is permed over the layer of $\mathrm{SiO} \mathrm{O}_{2}$. This metal layer covers the entire channel region and it form the gate (G).
Operation:
The sulutrate and source are grounded and positive voltage is applied at the gate.

The positive charge on gate induces an equal negative charge on the sulestrate side between source and dawn region.

The path is created between source and drain regions. The negative charge of electrons which are minority carriers in

The positive voltage on the gate on the semiconductor increases.

Hence, the conductivity increase and current flows prom source to drain thorough the induced channel.

The drain current is enhanced by the positive gate voltage as in graph.

DEPLETION MOSFET:
Construction:
The construction of N-channel depletion MOSFET is shown in fig.

P-substrate
When N-channel is diffused between the source and drain to the basic structure of Depletion MOSFE7.

Operation:

When $V_{a s}=0$ i
The drain C_{S} positive w.r.t source the current flow (I_{D}) from source to drain though N-channel.
When $V_{e r s}=-1 v,-2 v, \ldots$:
The drain to source current flow' φ reduced, since the N-channel width is reduced.
When $V_{G S}=V_{G S}$ (OFF):
Between Source to drain the N-channel width becomes zero. So no ID flows.
When $v_{g s}=+v,+2 v, \cdots$
When $V_{g s}$ is positive voltage, this induce the in e N-channel width between source to drain. So current flows DEPARTMENT OF MIMANTITES
though N -channel is also more. This is called Enhancement mode.

Drain Transfer Characteristics:
$I_{0} \hat{A}$
$(m A)$

Applications of MOSFET:

1) Used as amplifier in radio frequency (RF) applications.
2) Used as passive element like resistor (R), Capacitor (C) \& Inductor (L)
3) Used as Power Regulators
4) Used as High speed switch
5) Used as Electronic $D C$ relay

SJXICON Controlled Rectify er (scr)

* A silicon Condsoolled Rectifier is a fours. layers solid state cworent controlling device.
* It is also called as semiconductor Controlled Rectifier.
* $S C R s$ are available perm few voltages to several $K V$ and aw amperes to several KA .
* It is a unidirectional device.
* It is a bipolar device (both elactuone 2 hobs are charge corries.).

b) Symud of $S C R$
a) Structure of $S C R$
* It is a 4 layer PNPN switching $N J_{1} \& J_{3}$ are forward biased, whereas J_{2} is device with alternate layer of $P \& \mathrm{~N}$ semiconductor materials
* It converts the $A C$ signal to $D C$ signal in controlled manner.
* For current conduction, J_{1}, J_{2}, J_{3} must le forward biased.
Working Modes:

1. Forward Blocking Mode (FBM)
2. Forward Conduction Mode (FCM)
3. Revere Blocking Mode (RBM)
1) Forward Blocking Mode:

$$
\begin{aligned}
& J_{1} \rightarrow F \cdot B \\
& J_{2} \rightarrow R \cdot B \\
& J_{3} \rightarrow F \cdot B
\end{aligned}
$$

\& So there is only small current flowing through SCR. This is called as Forward blocking mode. 2) Forward Conduction Mode :

$J_{1} \rightarrow F \cdot B$ In this, the three $J_{2} \rightarrow F \cdot B$, junctions are forward $J_{3} \rightarrow F \cdot B$ biased. Hence the forward voltage drops and current starts to increase linearly.
3) Reverse Blocking Mode:

In this, $J_{1} \& J_{3}$ are
$J_{1} \rightarrow R \cdot B$ revere e biased. When
$J_{2} \rightarrow F \cdot B \quad V_{R}$ voltage is increased
$J_{3} \rightarrow R \cdot B$ there is small amount of current flow. At one level, there
is junctional breakdown and the current starts is junctionerease radidu rapidly.
 ON can lee controlled by verifying the gate current.
Applications of $S C R$
1.) Used in AC voltage stablizas.
2) Used as switch.
3) Used as choppers.
4) Used in inverter circuit.
5) Used in battery charge.
b) Used for speed controlled $D C$ motors

Insulated Gate Bipolar Transistor
(IGBT):

* IGBT is a multi-layer semiconductor structure with alternate p-type and n-tyne doping:
* IGBT is combination of leith power MOSFET and power BJT. MOSFET $T \rightarrow$ at ip side
* IGBT is also known as Metal Oxide Insulated Gate Transistor ($M O S I G T$), Conductively - Modulated Field Effect Transistor (CQMFET), Gain Modulated FEC (GMFET).

The N^{+}lays substrate in drain is Operation:
substituted in the IGBT by a P^{+}lays sulestrate called collector.

When gat is positive with respect to emitter and emitter voltage greater than the threshold voltage of IGBT, a N-channel is formed in the P-region as in power MOSFET. ($V_{G E}>V_{T}, N$ chard paned in P sep $)$

Thus N-channel short circuits the N^{-}region with N^{+}emitter region. As election movement in the N-channel intuan, causes substantial hole injectors from P^{+}substrate layer into that are epitaxial layer.

The three layers P^{+}, N^{-}and P^{+} constitute a PNP transistor with Pt^{+}as emitter, N^{-}as base and P as collector. constitute a PNP transistor bare and P as collector. Current, $\left(I_{C}\right) V_{s}$ collector emitter voltage,
emitter, N^{-}as N^{+}layers constitute to NPN
leo P and $V_{C E}$ for variow values of gate emitter uoltag,
$V_{G E}$. ansistor.

VI \& Transf Characteristics:

Static $V-I$ characteristics of IGBT is shown in figure. The plot of collector current, $\left(I_{C}\right) V_{s}$ collector emitter voltage,

UNIT III: ANALOG CIRCUITS

The shape of the output charactaistice is similar to that of BJT. But here the controlling parameter is gate emitter volta $\left(V_{G E}\right)$. Hence IGBT is voltage-contadled device.

The transfer cheractoristice of an IGBT is a plot of collector current $\left(I_{c}\right) V_{s}$
Gate-emitter voltage ($V_{G E}$) as in figure. This characteristics is similar to power MOSFET.
off When $V_{G E}<V_{T}$, IGBT is in the

- $2 t a t e$. Wothen the device is off, junction J_{2} blocks forward voltage and in case reverse voltage appears across collector and emitter junction, J_{1} blocks it. Applications of IGBT:

1) Used in SMPS
2) Used in UPS
3) Used for speed control of $A C$ and $D C$

* Used in inverters.
* Used in e-automolute system

INVERTER:
The inverter is an electronic circuit that convert fixed DC supply to variable $A C$ supply.

The inverter is used to run the AC loads through a battery.
Types:

1. Single Phase Inverter
2. Three Phase Inverter

Singe Phase Inverter:
The single phase inverter is also called as half bridge rectifier. It converts D supply to single phase $A C$ supply. For this purpose two switching devices ($S C R, M O S F E T, I G B T$) are
used to convert $D C$ to $A C$. Diodes and

Capacitors helps the circuit to operate smoothly.
Working:
In The half laidge inverter, the output of varies from $\frac{V_{S}}{2}$ to $-\frac{V_{S}}{2}$. As shown in the circuit, two switching devices ar connected in one common branch. The switching device may be SCR, MOSFET or IQ BT.

Generally in inverter, MOSFET is commonly used as switching device. Two switches S_{1} \& S_{2} are used. To obtain one cycle of alternating voltage each device is triggered at one time. The other being off at the same time For example to obtain the positive cycle, of alternating supply, device s_{1} is
turned ON, while S_{2} is kept OFF. Similarly to obtain negative cycle of alternating supply, device S_{2} is toned on while S_{1} is kent off. The output wave is shown in Biguse.
Output Waveform:

As shown in the output wave, when Applications:
S_{1} is conducting from 0 to $\frac{T}{2}$, the output $+\frac{V_{S}}{2}$ is obtained. similarly, the outpost $\frac{V_{s}}{2}$ when S_{2} is conducting from $\frac{T}{2}$ to T, the output $\frac{V_{S}}{2}$ is obtained. Hence the output alternates between $+\frac{V_{S}}{2}$ to $-\frac{V_{S}}{2}$, which is regarded as alternating voltage. T is the total time period of the conduction of two devices.

It can be noted that the output voltage waveform is a stepped square waveform.

In inverter the stepped square waveform alternates between two values, which is considered as alteanating voltage.

1) Used in UPS
2) Used as speed control in $D C$ motors.
3) Used in High Voltage $D C$ systems. ($H V D C$).
4) Used in refrigeration compressors.
5) Used in solar pour generation system.

Fig: Single Phase Inverter

Rectifiers

* The circuits which are used to convert $a \cdot c$ Voltage to $d-c$ voltage are called "Rectifiers."
* Block diagram:-

* Types:-

1. Half-wave Rectifier
2. Centre tapped ful-wave rectifier
3. Full-wave bridge rectifier

Half-wave Rectifier:-
Diagram:-

* It consists of transformer, diode and load resistance.
* Here, diode acts as a switch. i, user forward biasing condition, it is a closed switch, and reverse biasing condition, it is a open switch.
* The transformer used to step-down the ac voltage. (I/P Voltage).
* operation:-

During five half cycle

* During tie halfcycle of the input Voltage (o to π), The point ' A ' is the
 with respect to point ' B '.
* During this period, the diode becomes forward biased and it ats as a (ON) closed Switch.
* The entire positive input voltage is applied across The load. The current path is $A-D-R-B$. It is shown in figure above.
-X During negative half cycle: $(0+\phi)$ switch open arvite
* During this period ($\pi-2 \pi$),

The point ' B ' is positive with respect to A.

* In this period, Diode ' D ' becomes reverse biased. Then it acts as a open switch. So, there is ar $0 / \mathrm{P}$ Voltage across load. It is shown is above figure.
Input and output waveforms:-

During negative half cycle of the input initron
II: Centre tapped Full-wave Rectifier
Diagram:-

* The fig, shows the centre tapped fullwaverectifier Orarit.
* It Consists of two diodes, one Centre tapped trasformer and load resistance.
* By Centre tapping, the Secondary winding is divided into two equal pants.
* Thus, the voltage available between A to B is 180° out of phase with the voltage available between B to C.
lip at $\dot{D}_{2}^{\prime} \quad V_{\text {in }} \uparrow$
Operation:-
When an A.C voltage is applied to primary winding of transformer, as pertheprinciple of transformer, it transfers the primary voltage into secondary voltage without changing its frequency.
* During positive half cycle:-

Diagram:-

* During positive half cycle of the input Voltage, the terminal ' A ' is more positive than terminal ' C '. Thus diode ' I ' becomes more forward biase.i. than-diode
D_{2}.
* Thus, $D_{1} \rightarrow$ ads as a closed switch, $D_{2} \rightarrow$ ads as a open switch. The current path is $A-D_{1}-R_{L}-B$.
* Therefore, we can: get positive output Voltage

During negative half cycle of the input voltage the terminal ' C ' is more positive than terminal ' A ', thus, diode ' D_{2} ' becomes more forward biased than diode D_{1}. Thus, diode D_{2} acts as a closed switch and diode D_{1} acts as a open switch.

Diagram: -

* Then the Current path is $C-D_{2}-R_{L}-B$. Here, we can get positive output Voltage across load. It is shown is below fig. I/P\& O / P waveforms.

Input signal
op at diode ' D '

Op at ' D_{2}

Note:-
The Ripple frequency on a single phase fult-ware rectifier is twice the supply frequency, ire $2 f$.

* If the supply frequency is 50 Hz , the ripple frequency of this rectifier is $2 \times 50=100 \mathrm{~Hz}$.
* (i) Average op voltage $\left(V_{d}\right)$

Input voltage $V_{\text {in }}=V_{m} \sin \omega t$
Input current $I_{i n}=I_{m} \sin \omega t$
$D C$ (or) average voltage is of sane form in the two hal; of the ac cycle. Hence, it is calculated for half cycle of input only.

$$
\begin{aligned}
V_{d c} & =\frac{1}{T} \int_{0}^{\pi} V_{i n} d(\omega t) \\
& =\frac{1}{\pi} \int_{0}^{\pi} V_{m} \sin \omega t d(\omega t) \\
& =\frac{V_{m}}{\pi} \int_{0}^{\pi} \sin \omega t d(\omega t) \\
& =\frac{V_{m}}{\pi}(-\cos \omega t)_{0}^{\pi}=\frac{V_{m}}{\pi}[-\cos \quad-(-\cos 0)] \\
V_{d c} & =\frac{V_{m}}{\pi}[1+1]=\frac{2 V_{m}}{\pi} \\
V_{d c} & =\frac{2 V_{m}}{\pi}
\end{aligned}
$$

(ii) Average input cursent (Id)

$$
\begin{aligned}
I_{d c} & =\frac{1}{T} \int_{0}^{T} I_{\text {in }} d(\omega t) \\
& =\frac{1}{\pi} \int_{0}^{\pi} I_{m} \sin \omega t(d(\omega t)) \\
I_{d c} & =\frac{2 I_{m}}{\pi}
\end{aligned}
$$

(iii) RMS output voltage ($V_{\text {rms }}$)

$$
\begin{aligned}
v_{\text {rms }} & =\left[\frac{1}{\pi} \int_{0}^{\pi} v_{i n}^{2} d(\omega t)\right]^{1 / 2}=\left[\frac{v_{i n}^{2}}{\pi} \int_{0}^{\pi} \sin ^{2} \omega t d(\omega t)\right]^{1 / 2} \\
& =\left[\frac{v_{m}^{2}}{\pi} \int_{0}^{\pi}\left(\frac{1-\cos 2 \omega t}{2}\right) d(\omega t)\right]^{\frac{1}{2}} \\
& =\left[\frac{v_{m}^{2}}{\pi}\left(\omega t-\frac{\sin (\omega t}{2}\right)_{0}^{\pi}\right]^{1 / 2} \\
v_{r m s} & =\frac{v_{m}}{v_{2}} .
\end{aligned}
$$

(iv) RMs output current:- (Forms)

$$
I_{0 r m s}=\frac{V_{\text {orms }}}{R_{L}}=\frac{V_{M}}{V_{2} \cdot R_{L}}=\frac{I_{m}}{\sqrt{2}} \quad\left(\because I_{m}=\frac{V_{m}}{R_{L}}\right)
$$

(v) Dc output power:- ($\left.P_{d c}\right)$

$$
P_{d c}=I_{d c}^{2} R_{L}=\frac{4 I_{m}^{2}}{\pi^{2}} \cdot R_{L}
$$

(Vi) AC Input power ($P_{\text {in }}$)

$$
P_{\text {in }}=I_{\text {orms }}^{2} \cdot R_{L}=\frac{I_{m}^{2}}{2} \cdot R_{L}
$$

(Vii) Efficiency.

$$
\begin{aligned}
& \text { Rectifier efficiency }(\eta)=\frac{P_{d c}}{P_{a c}} \times 100 \\
&=\frac{\frac{4 I_{m}^{2}}{\pi^{2}} \cdot R_{L}}{\frac{I_{m}^{2}}{2} \cdot R_{L}}=\frac{8}{\pi^{2}} \times 100 \\
& \eta=81 \%
\end{aligned}
$$

(Viii) Ripple factor (RF)

Ripple factor of fullwave rectifier is defined as the ratio of ac (or) 1 ms value of ripple component to average (or) dc component present in the output.

$$
R F=\frac{I_{\text {orms }}}{I_{d c}}=\frac{\sqrt{I_{o r m s}^{2}-I_{d c}^{2}}}{I_{d c}}=\sqrt{\left(\frac{I_{\text {orms }}}{I_{d c}}\right)^{2}-1}
$$

The form factor is given by,

$$
F F=\frac{I_{\text {orms }}}{I_{d c}}=\frac{I_{m} / \sqrt{2}}{\frac{2 I_{m}}{\pi}}=\frac{\pi}{2 \sqrt{2}}=1.11
$$

Hence, Ripple Factor,

$$
\begin{aligned}
& R F=\sqrt{(1.11)^{2}-1}=0.48 \\
& R F=0.48
\end{aligned}
$$

(ix) Peak-Inverse Voltage (PIV)

Peak inverse voltage is defined as the maximum (or) peak voltage that a diode can withstand under reverse biased condition.

PIV-calculated as follows:-
Assume, positive half cycle of input, D_{1} is Conduction and D_{2} is off. The maximum Voltage is V_{m} groped at R_{L}. similarly for negative half cycle, D_{1} iofFF, D_{2} is on. So O / P is again V_{m}. So $P I V=V_{m}+V_{m}=2 V_{m}$
(x) Transformer utilization Factor (TUF):

In this case, TUF is found by considering primary and secondary VA rating separately and take the average of two halves.

TUF for secondary (or) secondary utilisation factor sup can be Calculated as,

$$
\begin{aligned}
\text { SUP } & =(T \cup F)_{S}=\frac{P_{d c}}{P_{a c} \text { rated }} \\
& =\frac{I_{d c}^{2} \cdot R_{L}}{V_{\text {dorms }} \cdot I_{\text {orms }}}=\frac{\left(\frac{2 I_{m}}{\pi}\right)^{2} \cdot R_{L}}{\frac{V_{m}}{\sqrt{2}} \cdot \frac{I_{m}}{\sqrt{2}}}=\frac{\left(\frac{2 I_{m}}{\pi}\right)^{2} \cdot R_{L}}{\frac{I_{m} \cdot I_{m} \cdot R_{L}}{2}}
\end{aligned}
$$

$$
=\frac{4 I_{m}^{2} / \pi^{2}}{I_{m}^{2} / 2}=\frac{8}{\pi^{2}} \times 100=81.1 \%
$$

$$
\text { SUP }=(T O F)_{S}=81.1 \%
$$

Transformer primary supplies input for both half cycle of input, thus,

TUF for primary $=(T U F)_{p}$

$$
\begin{aligned}
& =2 \times 28.8 \%=57.2 \% \\
\% & =\frac{\left.(T \cup F)_{p}+6 \cup F\right)_{s}}{2}=69.15 \%
\end{aligned}
$$

Advantages:-

1. The output vorlage and transformer efficiency are high.
2. Low ripple factor
3. High transformer utilisation factor.

Dis-advantages:-

1. Usage of additional diode and bulky transformer is needed, and hence increase in cost
2. The peak inverse voltage of diode is high (2 vm).

FULL LAVE, BRIDGE RECTIFIER
Diagram:-

Transformer

* Bridge rectifier diagram consists of one-step down transformer, 4-PN-Junction diode, and one load resistor $\left(R_{L}\right)$.
operation:-
X During the positive half cycle of the input voltage, the terminal ' A ' is positive with respect to ' B.' Thess, diodes $D_{1} \& D_{2}$ are in forward biasing and $D_{5} S_{D_{4}}$ are in reverse biasing.
* Then the current flow is shore is below fig.

* Daring negative half cycle of the input voltage, the terminal ' B ' is positive with respect to ' A '. * Thus, diodes D_{3} and D_{4} are forward biased and diodes D_{1} and D_{2} arse reverse biased. * The current path is $B-D_{3}-R_{L}-D_{4}-A$. * It is shown in below fig.

Input \&s output waveforms:-

Transformer Utilisation factor (TUF)
It is defined as the ratio of $d c$ power to the rated ac power.

$$
\text { ire } \begin{aligned}
\text { TUG } & =\frac{P_{d c}}{P_{\text {ac rated }}}=\frac{\left(\frac{2 I_{m}}{\pi}\right)^{2} \cdot R_{L}}{V_{\text {orms }} \cdot I_{\text {orms }}} \\
& =\frac{\frac{4 I_{m}^{2}}{\pi^{2}} \cdot R_{L}}{\frac{V_{m}}{\sqrt{2}} \cdot \frac{I_{m}}{\sqrt{2}}}=\frac{8}{\pi^{2}} \times 100=81 \% \\
\text { TOP } & =0.81
\end{aligned}
$$

* In this case, centre tapped transformer is not required, hence secondary utilization factor itself defines the TUF.
* Ripple Factor and efficiency are same as full wave rectifies.

Advantages:-

1. Transformer with centre tap in secondary is not required.
2. Peak Inverse voltage is shared by
D_{1}, D_{2} and D_{3}, D_{4} Combinations equivally.
3. Better transformer utilization factor.

Dis-advantages:-

1. Additional 2 -diodes are required.
2. Efficiency is slightly reduced than the Fir,
\qquad
\qquad
\qquad
\qquad
REGULATORS
Definition:
It is an Electronic Grcuit that maintains a. Constant output voltage.

Block diagram:-
pulsating
 op voltage

The reverse voltage appearing across the reverse biased diodes is $2 \mathrm{~V}_{\mathrm{m}}$ but IWt diodes are sharing it.

Hence PIV rating of the diode is V_{m} and not $2 V_{m}$ as in case of full wave rectifie
3.26. COMPARISON OF HWR, FWR \& BRIDGE RECTIFIER

Parameter	Half wave Rectifier	Full wave Rectifier	Bridgo Rectifior
No. of diodes	One	Two	Four
Ripple Frequency	f_{s}	$2 f_{s}$	$2 f_{n}$
PIV	V_{m}	$2 V_{m}$	V_{m}
I_{m}	$\frac{V_{m}}{R_{f}+R_{l}}$	$\frac{V_{m}}{R_{f}+R_{\iota}}$	$\frac{V_{m}}{2 R_{f}+R_{l}}$
Average current $\left(I_{d c}\right)$	I_{m} / π	$2 I_{m} / \pi$	$2 I_{m} / \pi$
RMS value	$I_{m} / 2$	$I_{m} / \sqrt{2}$	$I_{m} / \sqrt{2}$
DC value $\left(V_{D C}\right)$	$\frac{V_{m}}{\pi}-I_{d c} R_{f}$	$\frac{2 V_{m}}{\pi}-I_{d c} R_{f}$	$\frac{2 V_{m}}{\pi}-2 I_{d c} R_{j}$
Ripple factor	1.21	0.482	0.482
$P_{D C}$	$I_{d c}^{2} R_{L}$	$I_{d c}^{2} R_{l}$	$I_{\text {dc }}^{2} R_{l,}$
$P_{A C}$	$I_{R M S}^{2}\left(R_{f}+R_{L}\right)$	$I_{R M S}^{2}\left(R_{f}+R_{L}\right)$	$I_{R M S}^{2}\left(2 R_{f}+R_{l}\right)$
Efficiency (η)	40.5\%	81.0\%	81.0\%
TUF	0.286	0.692	0.812

NUMBER CONVERSIONS.
DECIMAL TO BINARY.

1. Convert 4310 to Binary.

2	$\frac{43}{21}-1$
2	$\frac{10}{10}-1$
2	$\frac{5}{2}-0$
2	$\frac{2}{2}-1$

2. Convert 13,0 to Binary

$$
\begin{array}{l|l}
2 & \frac{13}{6}-1 \\
2 & \frac{3}{6}-0 \\
2 & 1-1 \\
\hline
\end{array}
$$

$$
13_{10}=110 I_{2}
$$

$$
43_{10}=1010112
$$

4. Convert 125.3510 to Binary.

$$
\begin{aligned}
& 125 \cdot 3510=(1111101 \cdot 01011001 \ldots)_{2}
\end{aligned}
$$

DECIMAL TO OCTAL.

1. Convert 1210 to 2. Convert 12310 to octal. () 8 . octal (1)s.
$8 \longdiv { 1 2 }$

$$
8 \sqrt{\frac{123}{\frac{15}{1}-7}} \quad 123_{10}=1738
$$

3. convert $45-96_{10}$ to octal ()$_{8}$.

$$
\begin{aligned}
& 8 \frac{45}{5-5,} \quad \begin{array}{l}
\frac{0.96 \times 8}{-7.68 \times 8} \\
-3 . \overline{84} \times 8
\end{array} \\
& (45 \cdot 96)_{10}=(55.737 \cdots)_{8} .
\end{aligned}
$$

4. Convert $(158 \cdot 45)_{10}$ to $\left.\operatorname{octal} C\right)_{8}$.

$$
\begin{aligned}
& 8 \left\lvert\, \begin{array}{l}
8 \left\lvert\, \frac{158}{19}-6\right. \\
2
\end{array} \quad \frac{0.45 \times 8}{3 \cdot 60 \times 8}\right. \\
& (158 \cdot 45)_{10}=(236 \cdot 34631 \ldots)_{8}
\end{aligned}
$$

DECIMAL TO HEXADECIMAL.

1. Convert 125,0 to
2. Convert 450,10 Hescadecimal (), to Hexadecimal () 6 .

$$
\begin{equation*}
1 6 \longdiv { \frac { 1 2 5 } { 7 } } \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
16 \left\lvert\, \frac{\frac{450}{28}}{1}-2\right. \tag{13}
\end{equation*}
$$

$$
12510=7 D_{16}
$$

$$
450_{10}=1 c 2_{16}
$$

3. Convert 157.2510 to Hexadecimal (2)

$$
\begin{aligned}
16 \frac{157}{9-(13) D} & \frac{0.25 \times 16}{4.00} \\
157.251 .0 & =9 D .416
\end{aligned}
$$

4 . Convert 255.13210 to Hexadecimal ()\%.

$$
\begin{array}{r}
16 \left\lvert\, \frac{255}{\frac{15}{F}-(15)-F} \begin{array}{r}
\frac{0.132 \times 16}{\leftarrow 2.112 \times 16} \\
\\
<-1.792 \times 16 \\
(255.132)=(F F+21 C \ldots) .672
\end{array}\right.
\end{array}
$$

BINARY TO DECIMAL

1. Convert 1011_{2} to

Decimal () 10 .

$$
\begin{aligned}
& 1011
\end{aligned}
$$

$$
\begin{aligned}
& 1011_{2}=11_{10}
\end{aligned}
$$

2. Convert 10110_{2} to Decimal ($)_{10}$.

$$
10110,0 \times 2^{\circ}=0
$$

$$
1 \cup \breve{\longrightarrow} \times 2^{\circ}=2
$$

$$
\longrightarrow 0 \times 2^{3}=0
$$

$$
1 \times 2^{4}=16
$$

$$
10110_{2}=2210 .
$$

3. Convert 111.01_{2} to Decimal 0$)_{10}$.

$$
\begin{aligned}
& 111.01_{2}=7 \cdot 25_{10}
\end{aligned}
$$

4. Convert $1010 \cdot 1012$ to $\operatorname{Decemal}(1)$.

$$
\begin{aligned}
& (1010 \cdot 101)_{2}=(10.625)_{10}
\end{aligned}
$$

OCTAL TO DECIMAL

1. Convert 1238 to Decimal ($)_{10}$.

$$
\begin{aligned}
& 123 \quad 765
\end{aligned}
$$

$$
\begin{aligned}
& 765 \stackrel{5}{\hookrightarrow} 5 \times 8^{\circ}= \\
& \xrightarrow{\hookrightarrow} \square \times 8 \times 8^{\circ}=5 \\
& \longrightarrow 7 \times 8^{2}=\frac{448}{501} \\
& 123_{8}=83_{10}
\end{aligned}
$$

2. Convert 7658 to Decimal () 10 .

BE3251 Basic Electrical and Electronics Engineering
3. Convert 123.458 in to Decimal $\bar{C})_{10}$

$$
\begin{aligned}
& \begin{array}{l}
123 \\
\longrightarrow 3 \times 8^{\circ}=3 \\
\longrightarrow 2 \times 8^{\prime}=16 \\
1 \times 8^{2}=\frac{64}{83}
\end{array} \\
& 0.45 \% \\
& 123.45_{8}=83-0.578125_{10} \\
& \rightarrow 4 \times 8^{-1}=\frac{0.078}{0.5}
\end{aligned}
$$

4. Convert 77.228 into Decimal ()$_{10}$.

77 .

$$
\begin{aligned}
& 77.228=63.28125_{10} .
\end{aligned}
$$

HEXADECIMAL TO DECIMAL 1. Convert $A 2_{16}$ in Decimal $(10$.

$$
\begin{aligned}
& A{ }^{2} \\
& \longrightarrow \\
& \\
&
\end{aligned} \times 1(10) \times 16^{\circ}=\frac{160}{162} \quad A 2_{16}=162_{10}
$$

2. Convert $C 5_{16}$ into Decimal (C)

C 5

$$
\longrightarrow 5 \times 16^{\circ}=5 \quad C(12) \times 16^{1}=\frac{192}{197} \quad C 5_{16}=19710
$$

3. Convert $1 B, 11_{16}$ into ()$_{10}$

$$
\begin{aligned}
& \begin{array}{l}
\stackrel{B}{\longrightarrow} B(11) \times 16^{\circ}=11 \\
\\
1 \times 10^{\prime}=\frac{16}{27}
\end{array} \\
& 0.12 \\
& 1 B .12_{16}=27.070312510 \\
& 0.0708125
\end{aligned}
$$

BINARY CODES.

Decimal	$B C D 8421$	2421	Excess-3
0	0000	0000	0011
1	0001	0001	0100
2	0010	0010	0101
3	0011	0011	0110
4	0100	0100	0111
5	0101	1011	1000
6	0110	1100	1001
7	0111	1101	1010
8	1000	1110	1011
9	1001	1111	1100

LOGIC GATES.
AND gATE

* If both the inputs are logic one (High), then output is logic one(tigh).
* If any one of the input is logic zero ($C o \omega$), then, outputislogic zero. (low).

OR GATE.

* If any one of the inputs are is logic one (High), then, output is

A	B	$Y=A+B$
0	0	0
0	1	1
1	0	1
1	1	1

* If both the inputs are logic zero (low), then, output is $\operatorname{Cosic}^{\circ} \mathrm{C}$ zero(lios). NOT GATE.

* If input is logic zorn, then, output is logic one.

A	$Y=\bar{A}$
0	1
1	0

* It inpout is logic one (High), then, output is Wis zero (low).

SAND GATE.

x If any one of the input is logic zero(loow), then, output is logic | | | | |
| :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 1 | | one (High).

* If both the inputs are logic one(High), then, output is logic zero (low).
NOR GATE.
* If both the inputs are logic zero (low), then,

output is logic one (tHigh) | A | B | $A+1 B$ |
| :---: | :---: | :---: |
| 0 | 0 | 1 |
| 1 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 0 | |

* If any one offer inputs is logic one (High), then, output is logic zero(low).

EX-OR (EXCLUSIVE OR) GATE)

* If both the inputs are different, then, output is logic one(tfigh).

A	B	$A D B$
0	0	0
0	1	1
1	0	1
1	1	0

* If both the inputs are same, then, output is logic zeno(low).
EX-NOR GATE.

* If the bath the inouts ane bic same, then the output
is logic one (High).
*

0

0 $|$\begin{tabular}{l|c|c|}
\hline \& 1 \& 1 \\
1 \& 0 \& 0 \\

* If bothe inputs are \& 0 \& 0 \\
1 \& 1 \& 1 \\
\hline
\end{tabular} different, then, output is Conic zero (low).

COMBINATIONAL LOGIC CIRCUITS.

The logic circuits, whose outputs at any instant of time are entirely dependent upon the input signals present at that time are known as combine ational. logic circuits.
Eg. Adder, Subtractor, Decoder, Encoder, Multiplexer, De multiplex.

ADDERS.
HALF ADDER: A combinational circuit that performs the addition of two bits is called half adder.
FULL $A D D E R$. A circuit that performs adder. addition of three bits is called fuel adder.

HALF ADDER.

A	B	C	S
0	0	0	0
0	1	0	1
1	0	D	1
1	1	1	0

* A.combinational Coffic circuit, which is used to add faro binary bits is called Halt
* The two inputs are named A ep B. It
* The two outputs are named Sum \&o carry. (S 2, C)
* If both the infants are logic
zero (low), then, output is logic zero (low), then, output is log'
zero for. Southern outputs ($\operatorname{sum} a$ carry)
* If the both the inputs are diftent different logic one or zero, then the sum output is logic one (High carry output is $\operatorname{zero}(l o w)$.
$*$ If both the inputs are logic one (High), then, the output sum is zero, and Carry Conic one (high).

FULL ADDER.

A	B	C	S	C_{r}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$
\begin{aligned}
S= & \bar{A} \bar{B} C+\bar{A} B \bar{C} \\
& +A \bar{B} \bar{C}+A B C \\
S= & A \oplus B \oplus C \\
C_{\gamma}= & \bar{A} B C+A \bar{B} C \\
& +A B \bar{C}+A B C \\
C_{\gamma}= & A B+(A \oplus B) C
\end{aligned}
$$

* full adder means adding of three binary bits and outputs are sum and carry.
* If all the three inputs are logic zero(low), then, bath the outputs of sum on carry are logic zero (low).
* If any one of the input is logic one (high) only one input. Then, the output of sum is logic one (high) and carry oubout is Cofic_{2} zen (low) .
* If any of the two inputsiare logic one (high), then, the output of sum is logic zero $(l o w)$, and carry oubsent is logic one (high).
* If all the inputs are logic one (high), then, Both the sum i carry outputs are logic one (high).

SUE IR ACTOR.
They are two types of subtractor circuits (i) Halt subtractor, (ii) Full susfractor.

HALF SUBTRACTOR.

A	B	B_{γ}	D_{i}
0	0	0	0
0	1	1	1
1	0	0	1
1	1	0	0

* If both the inputs are logic zero(low), then, output of both Borrow and Difference logic zero (low).
* If inputs A logic zen (low), and Input B Logic one (high), then Logic outputs Diftence and Borrow logic one(high).
* If input A, logic one (high) and input B, logic zero(low) then, output Borrow logic zero (low) and Difference logic one (high).
* If inputs are logic one(high), then. Outputs are both borrow \& Difference logic zero.

FULL ADD
FULL SUBTRACTOR.

A	B	C	B_{r}	D_{i}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

* If all the inputs are $A B C$ are logic zeno (low), and inputs $A \& B, A 2 C$ are logic One (high), then outs are Borrow is Difference logic zeno.
* If inputs $(A \& B),(A \& C),(A ; B, G)$ Logic zero l (low), the inputs A, B, C logic One (high) then, outputs are both borrow is Difference logic one (high).
* If imputs (BaC) logie zedo \&s A lofic one and, imput A lofic zero, (Bac) cogic zone then, logit output logic one * If lioputs $32 C$ are logic one and input A tofic zero, then output Differchas lofic zero, is Brorrow losic one.
* If inputs is \& C lofic renp 3. $(P+\bar{Q})(P+Q+R)(Q+\bar{R}+S)$ top ' A ' lofic one then, oubput Borrow losic zero \& Diflerence Cofic one.

SUM OF PRODUCT FORM.

1. $A B \bar{C}+A \bar{B} \bar{C}$
2. $X Y+X \bar{Y} z+Y z$
3. $\overline{P Q}+P Q R+Q \bar{R} S$

PRODUCT OF SUM FORM.

1. $(A+B+C)(A+\bar{B}+C)$
2. $(x+\bar{y})(x+\bar{y}+z)(y+\bar{z})$

MUNTERNAS \& MAXTERMS

| | A | B | C | Minterms $\left(m_{i}\right)$ |
| :--- | :--- | :--- | :--- | :--- | Maxterms $\left(M_{i} i \mid\right.$

KARNAUGH MAP (K-MAP)

2-Variable Map (4-Colls)

3-Variable Map (8-cells)

4-Variable Map
(16 -cells)

3-Variable Map
द -Van abbe Map.

A	0	1
0	m_{0}	m_{1}
	m_{2}	m_{3}

$B C$				
0	00	01	11	
0	m_{0}	m_{1}	m_{3}	m_{2}
	m_{4}	m_{5}	m_{7}	m_{6}

O_{3}

GROPING CELLS FOR SIMPLIFICATION:
PAIR - Grouping two adjacent ones.
QY10:: Grouping four adjacent ones.
OCTET:' Grouping eight adjacent cues.

$$
1, f(A, B, C)=\operatorname{Sm}(1,3,6,7)
$$

$$
f=\bar{A} C+A B .
$$

2. $f(A, B, C)=\operatorname{Sm}(4,5,6,7)$

3. $f(x, y, z)=\operatorname{sem}(0,1,2,4,5,6)$

$$
f=\bar{\varphi}+\bar{z}
$$

$$
4 \cdot f(P, Q, R)=\operatorname{Sm}(0,1,3,4,5)
$$

$$
f=\bar{Q}+\bar{P} Q
$$

BE3251 Basic Electrical and Electronics Engineering

$$
\text { 3. } f(N, x, y, z)=\operatorname{Sin}(0,2,4,5,6,7,8,9,10,11)
$$

$$
\begin{aligned}
f= & \bar{P} \bar{Q}+R S \\
& +P R
\end{aligned}
$$

$$
\begin{aligned}
& 4 \cdot f(0, B, C, D)=S_{m}(1,3,5,7,13,15,9,11)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5. } f(A, B, C, D)=\operatorname{Sm}(0,1,2,4,5,6,8,9,10) \\
& \text { 3, 7, 11 }
\end{aligned}
$$

